COURSE OVERVIEW
Machine learning aims to extract knowledge from data and enables a wide range of applications. With datasets rapidly growing in size and complexity, learning techniques are fast becoming a core component of large-scale data processing pipelines. This course introduces the underlying statistical and algorithmic principles required to develop scalable real-world machine learning pipelines. We present an integrated view of data processing by highlighting the various components of these pipelines, including feature extraction, supervised learning, model evaluation, and exploratory data analysis. Students will gain hands-on experience applying these principles by using Apache Spark to implement several scalable learning pipelines.
https://verify.edx.org/cert/ac8d84019cfb414fbda53d81a911083a
Comentarios recientes